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TheBigPicture

e Cellulose and lignin compose cell wallsin
vascular plants

e Carbon turnover gradually converts original
cell wall material into humified products
and CO,

e Quantifying ligninin peat may allow
estimates of carbon accumulation rates
during the life span of thaw |lakes
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The Arctic Tundra: Thermal
Karst Lakes

« Arctic tundraplaysacrucia rolein carbon
seguestration

 Theformation of thermal karst lakes serves as
aclimatic record

— Patterned ground devel ops from annual freeze-
thaw cycles

— Water accumulating in depressions acts as a
thermal sink thinning the underlying permafrost

— Peat accumulates in shallow thaw lakes
seguestering carbon until erosion drains the lake




Thermal Karst Lakes

Arctic Ocean

Point Barrow, Alaska Photo: W. Eisner, Univ. Cincinnati
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Chemical X-ray Technigues

o Sample Preparation
- embedding
- plating



Polybed-812 & Spurr's Resin
1:1 mixture; 8 ym thickness




Chemical X-ray Technigues
Cont'd

o Sample Preparation
- embedding
- plating

* Photoelectron Emission Microscopy
- gpatial data



PEEM Image
carbon K-edge




Chemical X-ray Techniques
Cont'd

Sample Preparation

- embedding

- plating

Photoel ectron Emission Microscopy
(PEEM)

- gpatial data

X-ray Absorption Near Edge Spectroscopy
(XANEYS)
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Oxygen K-edge Spectrum
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Nitrogen K-edge Spectrum
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Outlook

* Developed a normalization procedure to
provide better quality data (quantitative x-
ray datarequires improved methods for
reliable measurement)

e Combine datawith Nuclear Magnetic
Resonance (NMR) spectra

* Discriminating original cell wall materials
from humified products appears feasible
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Future Directions

e Establish alink between chemical
analysis and microbiology via
lipid/enzyme analysis

* Eventually combine data with pollen
analysis (climate -> carbon storage ->
responsible microbial populations)
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